d-Variate Boolean Interpolation

F.J. Delvos
Fachbereich Mathematik, University of Siegen, Hölderlinstrasse 3, D-5900 Siegen 21, West Germany
Communicated by E. W. Cheney
Received October 14, 1980

Introduction

It has been shown in several papers $[2,3,7,8]$ that Boolean methods are useful for the construction of bivariate (and trivariate) interpolation schemes which are of importance in the finite element method. Our objective in this paper is to treat (for arbitrary $d \in \mathbb{N}$) a class of d-variate polynomial Lagrange interpolation schemes (including interpolation on d-simplices) which can be constructed by means of Boolean methods. In particular we present a simple representation formula for the projector of d-variate Boolean interpolation. Based on this formula explicit expressions for the fundamental functions of d-variate Boolean interpolation are derived.

1. d-Variate Tensor Product Interpolation

We begin by considering a rectangular domain

$$
D=\mid a_{1}^{\prime}, a_{1}^{\prime \prime}[\times \cdots \times] a_{d}^{\prime}, a_{d}^{\prime \prime}\left[\subset \mathbb{R}^{d} ;\right.
$$

we denote by $C(\bar{D})$ the algebra of real valued continuous functions of d independent variables x_{1}, \ldots, x_{d} defined on \bar{D}.

Next we consider d injective real sequences

$$
\left(x_{i, u}\right)_{i \in \mathbb{N}} \quad(u=1, \ldots, d)
$$

satisfying

$$
\begin{gathered}
\left(x_{i_{1}, 1}, \ldots, x_{i_{4}, d}\right) \in \bar{D} \\
\left(i_{u} \in \mathbb{N} ; 1, \ldots, d\right) . \\
99
\end{gathered}
$$

Furthermore we assume that there are d strictly increasing functions from \mathbb{N} to \mathbb{N} :

$$
\begin{gathered}
a_{u}(m)<a_{u}(m+1), \quad a_{u}(m) \in \mathbb{N} \\
(m \in \mathbb{N}, u=1, \ldots, d)
\end{gathered}
$$

Next we define the functions $f_{i, u}^{m}$:

$$
\begin{gathered}
f_{i, u}^{m}\left(x_{1}, \ldots, x_{d}\right)=\prod_{\substack{k=1 \\
k \neq i}}^{a_{u}(m)}\left(x_{u}-x_{k, u}\right) /\left(x_{i, u}-x_{k, u}\right) \\
\left(i=1, \ldots, a_{u}(m) ; m \in \mathbb{N} ; u=1, \ldots, d\right)
\end{gathered}
$$

The functions $f_{i, u}^{m}$ are d-variate extensions of univariate fundamental Lagrange polynomials. Note that

$$
\begin{gather*}
f_{i, u}^{m}\left(x_{1}, \ldots, x_{j, u}, \ldots, x_{d}\right)=\delta_{i, j} \\
\left(i, j=1, \ldots, a_{u}(m) ; u=1, \ldots, d ; m \in \mathbb{N}\right) \tag{1.1}
\end{gather*}
$$

Now we define d-variate extensions of univariate Lagrange interpolation operators:

$$
\begin{align*}
P_{u}^{m}(f)\left(x_{1}, \ldots, x_{d}\right)= & \sum_{i=1}^{a_{u}(m)} f\left(x_{1}, \ldots, x_{i, u}, \ldots, x_{d}\right) f_{i, u}^{m}\left(x_{1}, \ldots, x_{d}\right) \\
& (m \in \mathbb{N} ; u=1, \ldots, d) . \tag{1.2}
\end{align*}
$$

It is easily seen that the linear operator

$$
P_{u}^{m} \in L(C(\bar{D}))
$$

is also a projector:

$$
\begin{equation*}
P_{u}^{m} P_{u}^{m}=P_{u}^{m} \quad(m \in \mathbb{N} ; u=1, \ldots, d) \tag{1.3}
\end{equation*}
$$

Also the projectors P_{u}^{m}, P_{v}^{n} commute:

$$
\begin{equation*}
P_{u}^{m} P_{v}^{n}=P_{v}^{n} P_{u}^{m} \quad(m, n \in \mathbb{N} ; u, v=1, \ldots, d) . \tag{1.4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathbb{P}=\left\{P_{u}^{m}: m \in \mathbb{N}, u=1, \ldots, d\right\} \tag{1.5}
\end{equation*}
$$

is a set of commuting projectors on $C(\bar{D})$.

It has been shown $[4,5]$ that there is a (maximal) Boolean algebra $\mathbb{P}^{\prime \prime}$ of projectors in $L(C(\bar{D}))$ containing the set \mathbb{P}. We briefly recall the construction of $\mathbb{P}^{\prime \prime}$.

First we introduce the set

$$
\begin{equation*}
\mathbb{P}^{\prime}=\left\{Q \in L(C(\bar{D})): Q^{2}=Q, Q P=P Q(P \in \mathbb{P})\right\} . \tag{1.6}
\end{equation*}
$$

Obviously, we have

$$
\begin{gathered}
\mathbb{P} \subset \mathbb{P}^{\prime}, \\
0, I \in \mathbb{P}^{\prime}, \\
Q \in \mathbb{P}^{\prime} \Rightarrow \bar{Q}=I-Q \in \mathbb{P}^{\prime} .
\end{gathered}
$$

But generally \mathbb{P}^{\prime} is not closed with respect to the operator product. Therefore we introduce the smaller set

$$
\begin{equation*}
\mathbb{P}^{\prime \prime}=\left\{P \in \mathbb{P}^{\prime}: P Q=Q P\left(Q \in \mathbb{P}^{\prime}\right)\right\} . \tag{1.7}
\end{equation*}
$$

$\mathbb{P}^{\prime \prime}$ possesses the following properties:

$$
\begin{gather*}
\mathbb{P} \subset \mathbb{P}^{\prime \prime} \subset \mathbb{P}^{\prime} ; \\
P \in \mathbb{P}^{\prime \prime} \Rightarrow \bar{P} \in \mathbb{P}^{\prime \prime} ; \tag{1.8}\\
P_{1}, P_{2} \in \mathbb{P}^{\prime \prime} \Rightarrow P_{1} P_{2}=P_{2} P_{1} \in \mathbb{P}^{\prime \prime} .
\end{gather*}
$$

$\left(\mathbb{P}^{\prime \prime}, \leqslant\right)$ is a complemented distributive lattice (i.e., a Boolean algebra) with respect to the order relation

$$
\begin{equation*}
P_{1} \leqslant P_{2} \Leftrightarrow P_{2} P_{1}=P_{1} \quad\left(P_{1}, P_{2} \in \mathbb{P}^{\prime \prime}\right) . \tag{1.9}
\end{equation*}
$$

In particular we have

$$
\begin{align*}
\inf \left\{P_{1}, P_{2}\right\} & =P_{1} P_{2} \in \mathbb{P}^{\prime \prime}, \tag{1.10}\\
\sup \left\{P_{1}, P_{2}\right\} & =P_{1}+P_{2}-P_{1} P_{2}=P_{1} \oplus P_{2} \in \mathbb{P}^{\prime \prime} \tag{1.11}
\end{align*}
$$

$P_{1} \oplus P_{2}$ is called the Boolean sum of P_{1}, P_{2}.
Next we consider special projections in $\mathbb{P}^{\prime \prime}$. By construction we have

$$
T_{m_{1} \cdots m_{d}}=P_{1}^{m_{1}} \cdots P_{d}^{m_{d}} \in \mathbb{P}^{\prime \prime}
$$

$T_{m_{1} \cdots m_{d}}$ is the projector of d-variate polynomial tensor product interpolation; it possesses the simple representation

$$
\begin{equation*}
T_{m_{1} \ldots m_{d}}(f)=\sum_{i_{1}=1}^{a_{1}\left(m_{1}\right)} \cdots \sum_{i_{d}=1}^{a_{d}\left(m_{d}\right)} f\left(x_{i_{1}, 1}, \ldots, x_{i_{d}, d}\right) \prod_{u=1}^{d} f_{i_{u}, u}^{m_{u}} \tag{1.12}
\end{equation*}
$$

The interpolation properties are described by

$$
\begin{gather*}
T_{m_{1} \ldots m_{d}}(f)\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right)=f\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right) \\
\left(j_{u}=1, \ldots, a_{u}\left(m_{u}\right) ; u=1, \ldots, d\right) . \tag{1.13}
\end{gather*}
$$

The range $\operatorname{Im}\left(T_{m_{1} \ldots m_{d}}\right)$ of $T_{m_{1} \ldots m_{d}}$ is a d-variate polynomial tensor product space of dimension $a_{1}\left(m_{1}\right) \cdots a_{d}\left(m_{d}\right)$:

$$
\begin{align*}
\operatorname{Im}\left(T_{m_{1} \cdots m_{d}}\right) & =\operatorname{span}\left\{x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}: k_{u}=0, \ldots, a_{u}\left(m_{u}\right)-1 ; u=1, \ldots, d\right\} \\
& =: \mathbb{P}_{a_{1}\left(m_{1}\right)-1, \ldots, a_{d}\left(m_{d}\right)-1}^{d} . \tag{1.14}
\end{align*}
$$

2. d-Variate Boolean Interpolation

In this section we shall use the concept of Boolean sum of commuting projectors to construct d-variate interpolation schemes for distributions of interpolation points having a more complex structure than those of the tensor product schemes.

We assume that

$$
q \in \mathbb{N}, \quad d \leqslant q
$$

Then the operator

$$
B_{q, d}=\oplus_{m_{1}+\cdots+m_{d}=q} T_{m_{1} \cdots m_{d}}
$$

is an element of the Boolean algebra $\mathbb{P}^{\prime \prime}$ of projectors constructed in Section 1. We will call $B_{q, d}$ the projector of d-variate Boolean interpolation. The interpolation properties of the interpolation scheme defined by $B_{q, d}$ are described in the following Proposition 1.

Proposition 1. Suppose that $f \in C(\bar{D})$. Then

$$
\begin{gather*}
B_{q, d}(f)\left(x_{j_{1}, 1}, \ldots, x_{j_{d^{d}}}\right)=f\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right) \\
\left(j_{u}=1, \ldots, a_{u}\left(m_{u}\right) ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right) \tag{2.1}
\end{gather*}
$$

i.e., the set of interpolation points of $B_{q, d}$ is the union of the sets of interpolation points of $T_{m_{1} \cdots m_{d}}$ with $m_{1}+\cdots+m_{d}=q$.

Proof. It follows from the lattice-theoretical construction of $B_{q, d}$ that

$$
T_{m_{1} \cdots m_{d}} \leqslant B_{q, d} \quad\left(m_{1}+\cdots+m_{d}=q\right)
$$

i.e., we have

$$
\begin{equation*}
T_{m_{1} \cdots m_{d}} B_{q, d}=T_{m_{1} \cdots m_{d}} \quad\left(m_{1}+\cdots+m_{d}=q\right) \tag{2.2}
\end{equation*}
$$

Using (1.13) and (2.2) we can conclude

$$
\begin{aligned}
f\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right) & =T_{m_{1} \cdots m_{d}}(f)\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right) \\
& =T_{m_{1} \cdots m_{d}} B_{q, d}(f)\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right) \\
& =B_{q, d}(f)\left(x_{j_{1}, 1}, \ldots, x_{j_{d}, d}\right)
\end{aligned}
$$

which completes the proof of Proposition 1.
The range $\operatorname{Im}\left(B_{q, d}\right)$ of $B_{q, d}$ (i.e., the invariance set of $\left.B_{q, d}[1]\right)$ is described in Proposition 2.

Proposition 2. The invariance set of $B_{q, d}$ is given by

$$
\begin{align*}
V_{q, d} & :=\operatorname{Im}\left(B_{q, d}\right) \\
& =\operatorname{span}\left\{x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}: k_{u}=0, \ldots, a_{u}\left(m_{u}\right)-1 ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right\} \\
& =\sum_{m_{1}+\cdots+m_{d}=q} \mathbb{P}_{a_{1}\left(m_{1}\right)-1, \ldots, a_{d}\left(m_{d}\right)-1}^{d} . \tag{2.3}
\end{align*}
$$

Proof. Note first that for any two commuting projectors $P_{1}, P_{2} \in \mathbb{P}^{\prime \prime}$ the relation

$$
\operatorname{Im}\left(P_{1} \oplus P_{2}\right)=\operatorname{Im}\left(P_{1}\right)+\operatorname{Im}\left(P_{2}\right)
$$

is true. Taking into account (1.14) and the definition of $B_{q, d}$ we obtain

$$
\begin{aligned}
\operatorname{Im}\left(B_{q, d}\right)= & \sum_{m_{1}+\cdots+m_{d}=q} \operatorname{Im}\left(T_{m_{1} \cdots m_{d}}\right) \\
= & \sum_{m_{1}+\cdots+m_{d}=q} \operatorname{span}\left\{x_{1}^{j_{1}} \cdots x_{d}^{j_{d}}: j_{u}=0, \ldots, a_{u}\left(m_{u}\right)-1 ; u=1, \ldots, d\right\} \\
= & \operatorname{span}\left\{x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}: k_{u}=0, \ldots, a_{u}\left(m_{u}\right)-1\right. \\
& \left.\quad u=1, \ldots, d ; m_{1}+\cdots+m_{q}=q\right\},
\end{aligned}
$$

i.e., we have

$$
\begin{equation*}
V_{q, d}=\sum_{m_{1}+\cdots+m_{d}=q} \mathbb{P}_{a_{1}\left(m_{1}\right)-1, \ldots, a_{d}\left(m_{d}\right)-1}^{d} \tag{2.4}
\end{equation*}
$$

This completes the proof of Proposition 2. We consider a simple but instructive example. Suppose that

$$
\begin{align*}
x_{i, u} & =i \quad(i \in \mathbb{N} ; u=1, \ldots, d), \\
a_{u}(m) & =m \quad(m \in \mathbb{N} ; u=1, \ldots, d), \tag{2.5}\\
D & =\mathbb{R}^{d} .
\end{align*}
$$

Then the invariance set $V_{q, d}$ of $B_{q, d}$ is the linear space of "complete" polynomials of degree $\leqslant q-d$:

$$
\begin{align*}
V_{q, d} & =\sum_{m_{1}+\cdots+m_{d}=q} \mathbb{P}_{m_{1}-1, \ldots m_{d}-1}^{d} \\
& =\operatorname{span}\left\{x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}: k_{u}=0, \ldots, m_{u}-1 ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right\} \\
& =: \mathbb{P}_{q-d, d} \tag{2.6}
\end{align*}
$$

The interpolant $B_{q, d}(f)$ of f possesses the following interpolation properties:

$$
\begin{gather*}
B_{q, d}(f)\left(j_{1}, \ldots, j_{d}\right)=f\left(j_{1}, \ldots, j_{d}\right) \\
\left(j_{u}=1, \ldots, m_{u} ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right) . \tag{2.7}
\end{gather*}
$$

Thus, $B_{q, d}$ (with (2.5)) is the projector of cardinal polynomial Lagrange interpolation on d-simplices.

3. A Representation formula for $B_{q, d}$

The projector $T_{m_{1} \cdots m_{d}}$ of tensor product interpolation has a simple representation (1.12). It is the purpose of this section to derive an expression of $B_{q, d}$ in terms of the projectors $T_{m_{1} \cdots m_{d}}$. For this reason we shall prove some lemmas for arbitrary projectors in the Boolean algebra $\mathbb{P}^{\prime \prime}$.

First we recall that a sequence $\left(Q_{j}\right)_{j \in \mathbb{N}}$ is a chain iff

$$
Q_{j} \leqslant Q_{j+1} \quad\left(Q_{j} \in \mathbb{P}^{\prime \prime} ; j \in \mathbb{N}\right)
$$

Lemma 1. Suppose that $\left(Q_{i}^{1}\right)_{i \in \mathbb{N}},\left(Q_{i}^{2}\right)_{i \in \mathbb{N}}$ are chains in $\mathbb{P}^{\prime \prime}$. Put

$$
\begin{equation*}
Q_{r, 2}=\bigoplus_{i+j=r} Q_{i}^{1} Q_{j}^{2} \quad(r \in \mathbb{N}) \tag{3.1}
\end{equation*}
$$

Then $\left(Q_{r, 2}\right)_{r \in \mathbb{N}}$ is also a chain in $\mathbb{P}^{\prime \prime}$; moreover

$$
\begin{equation*}
Q_{r, 2}=\sum_{i+j=r} Q_{i}^{1} Q_{j}^{2}-\sum_{i+j=r-1} Q_{i}^{1} Q_{j}^{2} \tag{3.2}
\end{equation*}
$$

(Empty sums and empty Boolean sums are 0 by definition.)

Proof. It follows from the lattice-theoretical construction of $Q_{r, 2}, Q_{r+1.2}$ that

$$
\begin{aligned}
Q_{r+1,2} & =\sup \left\{Q_{r}^{1} Q_{1}^{2}, Q_{r-1}^{1} Q_{2}^{2}, \ldots, Q_{2}^{1} Q_{r-1}^{2}, Q_{1}^{1} Q_{r}^{2}\right\} \\
& \geqslant \sup \left\{Q_{r}^{1} Q_{1}^{2}, Q_{r-1}^{1} Q_{2}^{2}, \ldots, Q_{2}^{1} Q_{r-1}^{2}\right\} \\
& \geqslant \sup \left\{Q_{r-1}^{1} Q_{1}^{2}, Q_{r-2}^{1} Q_{2}^{2}, \ldots, Q_{1}^{1} Q_{r-1}^{2}\right\} \\
& =Q_{r, 2}
\end{aligned}
$$

Next we have

$$
\begin{aligned}
Q_{r, 2}= & \left(Q_{r-1}^{1} Q_{1}^{2} \oplus \cdots \oplus Q_{2}^{1} Q_{r-2}^{2}\right) \oplus Q_{1}^{1} Q_{r-1}^{2} \\
= & Q_{1}^{1} Q_{r-1}^{2}-Q_{1}^{1} Q_{r-1}^{2}\left(Q_{r-1}^{1} Q_{1}^{2} \oplus \cdots \oplus Q_{2}^{1} Q_{r-2}^{2}\right) \\
& +Q_{r-1}^{1} Q_{1}^{2} \oplus \cdots \oplus Q_{2}^{1} Q_{r-2}^{2} \\
= & Q_{1}^{1} Q_{r-1}^{2}-Q_{1}^{1} Q_{r-2}^{2}+Q_{r-1}^{1} Q_{1}^{2} \oplus \cdots \oplus Q_{3}^{1} Q_{r-3}^{2} \oplus Q_{2}^{1} Q_{r-2}^{2} \\
= & Q_{1}^{1} Q_{r-1}^{2}-Q_{1}^{1} Q_{r-2}^{2}+Q_{2}^{1} Q_{r-2}^{2}-Q_{2}^{1} Q_{r-3}^{2}+Q_{r-1}^{1} Q_{1}^{2} \oplus \cdots \oplus Q_{3}^{1} Q_{r-3}^{2} \\
= & \cdots \\
= & \sum_{s=1}^{r-1} Q_{s}^{1} Q_{r-s}^{2}+\sum_{s=1}^{r-2} Q_{s}^{1} Q_{r-1-s}^{2} .
\end{aligned}
$$

This completes the proof of Lemma 1 .
For the following it is useful to introduce the "ordinary" sum operators

$$
\begin{align*}
& C_{r, d}=\sum_{i_{1}+\cdots+i_{d}=r} Q_{i_{1}}^{1} \cdots Q_{i_{d}}^{d} \\
& \left(Q_{i}^{u} \in \mathbb{P}^{\prime \prime}, i \in \mathbb{N} ; u=1, \ldots, d\right) \tag{3.3}
\end{align*}
$$

Note that

$$
C_{r, d}=0 \quad(r \leqslant d-1)
$$

Our next objective is to extend Lemma 1.
Lemma 2. Suppose that

$$
\left(Q_{i}^{u}\right)_{i \in \mathbb{N}} \quad(u=1, \ldots, d)
$$

are chains in $\mathbb{P}^{\prime \prime}$. Put

$$
\begin{equation*}
Q_{r . d}=\oplus_{i_{1}+\cdots+i_{d}=r} Q_{i_{1}}^{1} \cdots Q_{i_{d}}^{d} \quad(r \in \mathbb{N}) \tag{3.4}
\end{equation*}
$$

Then $\left(Q_{r, d}\right)_{r \in \mathbb{N}}$ is also a chain in $\mathbb{P}^{\prime \prime}$.

Furthermore, the formula

$$
\begin{align*}
Q_{r, d} & =\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{i_{1}+\cdots+i_{d}=r-j} Q_{i_{1}}^{1} \cdots Q_{i_{d}}^{d} \\
& =\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} C_{r-j, d} \tag{3.5}
\end{align*}
$$

is true.
Proof. First we have

$$
\begin{aligned}
Q_{r, d} & =\stackrel{\oplus_{j_{d-1}=d-1}^{r-1}}{\oplus} \oplus_{j_{d}-2=d-2}^{j_{d-1}-1} \oplus_{j_{2}=2}^{j_{3}-1} \oplus_{j_{1}=1}^{j_{2}-1} Q_{j_{1}}^{1} Q_{j_{2}-j_{1}}^{2} \cdots Q_{j_{d-2-j_{d-2}}^{d-1}}^{Q_{r-j_{d-1}}^{d}} \\
& =\oplus_{j=d-1}^{r-1}\left(\underset{i_{1}+\cdots+i_{d-1}=j}{\oplus} Q_{i_{1}}^{1} \cdots Q_{i_{d-1}}^{d-1}\right) Q_{r-j}^{d}
\end{aligned}
$$

i.e., we have

$$
\begin{equation*}
Q_{r, d}=\bigoplus_{j=1}^{r-1} Q_{j, d-1} Q_{r-j}^{d}=\bigoplus_{i+j=r} Q_{i, d-1} Q_{j}^{d} \tag{3.6}
\end{equation*}
$$

In view of Lemma 1 and (3.6) it follows by induction that $\left(Q_{r, d}\right)_{r \in \mathbb{N}}$ is a chain in $\mathbb{P}^{\prime \prime}$.

Moreover, formula (3.2) yields $\left(Q_{j, d-1}=0(j \leqslant d-2)\right)$

$$
\begin{equation*}
Q_{r, d}=\sum_{j=d-1}^{r-1} Q_{j, d-1} Q_{r-j}^{d}-\sum_{j=d-1}^{r-2} Q_{j, d-1} Q_{r-1-j}^{d} \tag{3.7}
\end{equation*}
$$

Again we apply induction on d and we obtain (see (3.3))

$$
\begin{aligned}
Q_{r, d}= & \sum_{j=d-1}^{r-1}\left(\begin{array}{c}
(d-1)-1 \\
\left.\sum_{i=0}(-1)^{i}\binom{(d-1)-1}{i} C_{j-i, d-1}\right) Q_{r-j}^{d} \\
\end{array}-_{j=d-1}^{r-2}\left(\begin{array}{c}
(d-1)-1 \\
\left.\sum_{i=0}^{(d-1)-1}(-1)^{i}\binom{(d-1)-1}{i} C_{j-i, d-1}\right) Q_{r-1-j}^{d} \\
=
\end{array} \sum_{i=0}^{(-1)^{i}\binom{(d-1)-1}{i} \sum_{j=d-1}^{r-1} C_{j-i, d-1} Q_{r-j}^{d}}\right.\right. \\
& -\sum_{i=0}^{(d-1)-1}(-1)^{i}\binom{(d-1)-1}{i} \sum_{j=d-1}^{r-2} C_{j-i, d-1} Q_{r-1-j}^{d} \\
= & \sum_{i=0}^{(d-1)-1}(-1)^{i}\binom{(d-1)-1}{i} C_{r-i, d} \\
& -\sum_{i=0}^{(d-1)-1}(-1)^{i}\binom{(d-1)-1}{i} C_{r-1-i, d}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=0}^{(d-1)-1}(-1)^{i}\binom{(d-1)-1}{i} C_{r-i, d} \\
& -\sum_{k=1}^{d-1}(-1)^{k-1}\binom{(d-1)-1}{k-1} C_{r-k, d} \\
= & C_{r, d} \\
& +\sum_{k=1}^{(d-1)-1}(-1)^{k}\left(\binom{(d-1)-1}{k}+\binom{(d-1)-1}{k-1}\right) C_{r-k, d} \\
& +(-1)^{d-1} C_{r-(d-1), d} \\
= & \sum_{k=0}^{d-1}(-1)^{k}\binom{d-1}{k} C_{r-k, d}
\end{aligned}
$$

which completes the proof of Lemma 2.

Theorem 1. The projector of d-variate Boolean interpolation, $B_{q, d}$, possesses the following representation:

$$
\begin{align*}
B_{q, d} & =\oplus_{m_{1}+\cdots+m_{d}=q} T_{m_{1} \cdots m_{d}} \\
& =\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{n_{1}+\cdots+n_{d}=q-j} T_{n_{1} \cdots n_{d}} . \tag{3.8}
\end{align*}
$$

Proof. Since $\left(P_{u}^{i}\right)_{i \in \mathbb{N}}(u=1, \ldots, d)$ are chains in $\mathbb{P}^{\prime \prime}$ and $T_{n_{1} \ldots n_{d}}=$ $P_{1}^{n_{1}} \ldots P_{d}^{n_{d}}$ an application of Lemma 2 yields (3.8).

For $d=2$ we have

$$
\begin{equation*}
B_{q .2}=\sum_{i+j=q} T_{i j}-\sum_{i+j=q-1} T_{i j} ; \tag{3.9}
\end{equation*}
$$

for $d=3$ we obtain

$$
\begin{align*}
B_{q, 3}= & \sum_{i+j+k=q} T_{i j k} \\
& -2 \sum_{i+j+k=q-1} T_{i j k} \\
& +\sum_{i+j+k=q-2} T_{i j k} . \tag{3.10}
\end{align*}
$$

4. Fundamental Functions of d-Variate Boolean Interpolation

In this section we shall apply the representation formula of $B_{q, d}$ to give an explicit expression for the fundamental functions (or cardinal functions) of d variate Boolean interpolation. We define

$$
\begin{gather*}
F_{j_{1} \cdots j_{d}}^{q}=B_{q, d}\left(f_{j_{1}, 1}^{q-d+1} \cdots f_{j_{d}, d}^{q-d+1}\right) \\
\left(j_{u}=1, \ldots, a_{u}\left(m_{u}\right) ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right) \tag{4.1}
\end{gather*}
$$

It follows from Proposition 1 and the properties of $f_{j_{u}, u}^{q-d+1}(u=1, \ldots, d)$ that the functions $F_{j_{1} \ldots j_{d}}^{q}$ satisfy the cardinality relations

$$
\begin{gather*}
F_{j_{1} \cdots j_{d}}^{q}\left(x_{i_{1}, 1}, \ldots, x_{i_{d_{d}} d}\right)=\delta_{i_{1}, j_{1}} \cdots \delta_{i_{d} \cdot J_{d}} \\
\left(i_{u}=1, \ldots, a_{u}\left(m_{u}\right) ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q ;\right. \\
\left.j_{v}=1, \ldots, a_{v}\left(n_{v}\right) ; v=1, \ldots, d ; n_{1}+\cdots+n_{d}=q\right) . \tag{4.2}
\end{gather*}
$$

Furthermore, Proposition 2 yields

$$
\begin{align*}
& F_{j_{1} \cdots j_{d}}^{q} \in \operatorname{span}\left\{x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}:\right. \\
& \left.\quad k_{u}=0, \ldots, a_{u}\left(m_{u}\right)-1 ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right\} \\
& \quad\left(j_{v}=1, \ldots, a_{v}\left(n_{v}\right) ; v=1, \ldots, d ; n_{1}+\cdots+n_{d}=q\right) . \tag{4.3}
\end{align*}
$$

It follows from (4.2), (4.3) that

$$
\left\{F_{j_{1}}^{q} \ldots j_{d}: j_{v}=1, \ldots, a_{v}\left(n_{v}\right) ; v=1, \ldots, d ; n_{1}+\cdots+n_{d}=q\right\}
$$

is a basis of $\operatorname{Im}\left(B_{q, d}\right)$, the dual basis of the functionals

$$
\begin{gather*}
L_{i_{1} \cdots i_{d}}(f)=f\left(x_{i_{1}, 1}, \ldots, x_{i_{d} \cdot d}\right) \\
\left(i_{u}=1, \ldots, a_{u}\left(m_{u}\right) ; u=1, \ldots, d ; m_{1}+\cdots+m_{d}=q\right) \tag{4.4}
\end{gather*}
$$

with respect to the sbuspace $\operatorname{Im}\left(B_{q, d}\right)$. Thus we can expand the Boolean interpolant $B_{q, d}(f)$ of f in terms of the functions $F_{j_{1} \cdots j_{d}}^{q}$:

Proposition 3. Put $a_{u}(0):=0 \quad(u=1, \ldots, d)$. Then we have for any $f \in C(\bar{D})$

$$
B_{q, d}(f)=\sum_{r=d}^{q} \sum_{s_{d-1}=d-1}^{r-1} \cdots \sum_{s_{2}=2}^{s_{3}-1} \sum_{s_{1}=1}^{s_{2}-1}
$$

$$
\begin{align*}
& \sum_{k_{1}=a_{1}\left(s_{1}-1\right)+1}^{a_{1}\left(s_{1}\right)} \\
& \sum_{a_{2}=a_{2}\left(s_{2}-s_{1}\right)}^{\left.\sum_{2}-s_{1}-1\right)+1} \\
& \sum_{k_{d}=a_{d}\left(r-s_{d-1}-1\right)+1}^{a_{d}\left(r-s_{d-1}\right)} f\left(x_{k_{1}, 1}, \ldots, x_{k_{d}, d}\right) F_{k_{1}}^{q} \cdots k_{k_{d}} . \tag{4.5}
\end{align*}
$$

Our next objective is to derive an explicit expression for the fundamental functions $F_{k_{1} \ldots k_{d}}^{q}$ in terms of the fundamental functions of tensorproduct interpolation:

$$
\begin{gather*}
f_{k_{1} \cdots k_{d}}^{n_{1} \cdots n_{d}}=f_{k_{1}, 1}^{n_{1}} \cdots f_{k_{1}, d}^{n_{d}} \\
\left(k_{u}=1, \ldots, a_{u}\left(n_{u}\right) ; u=1, \ldots, d\right) . \tag{4.6}
\end{gather*}
$$

Theorem 2. Assume that

$$
\begin{equation*}
a_{u}\left(m_{u}-1\right)<k_{u} \leqslant a_{u}\left(m_{u}\right) \quad(u=1, \ldots, d) \tag{4.7}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& F_{k_{1} \cdots k_{d}}^{q}=\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{\substack{n_{1}+\ldots+n_{d}=q-j \\
m_{1} \leqslant n_{1} \ldots m_{d} \leqslant n_{d}}} f_{k_{1} \cdots k_{d}}^{n_{1} n_{d}} \tag{4.8}\\
& =\sum_{j=0}^{d-1}(-)^{j}\binom{d-1}{j} \\
& \sum_{s_{d-1}=m_{d-1}+\cdots+m_{1}}^{q-j-m_{d}} \\
& \sum_{s_{d-2}=m_{d-2}+\cdots+m_{1}}^{s_{d-1}-m_{d-1}} \\
& \vdots \\
& \sum_{s_{2}=m_{2}+m_{1}}^{s_{3}-m_{3}} \\
& \sum_{s_{1}=m_{1}}^{s_{2}-m_{2}} f_{k_{1}, 1}^{s_{1}} f_{k_{2}, 2}^{s_{2}-s_{1}} \cdots f_{k_{d-1}, d-1}^{s_{d-1}-s_{d-2}} f_{k_{d}, d}^{q-j-s_{d-1}} . \tag{4.9}
\end{align*}
$$

Proof. Using Theorem 1 and (1.12) we obtain

$$
\begin{aligned}
F_{k_{1} \cdots k_{d}}^{q} & =B_{q, d}\left(f_{k_{1}, 1}^{q-d+1} \cdots f_{k_{d}, d}^{q-d+1}\right) \\
& =\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{n_{1}+\cdots+n_{d}=q-J} T_{n_{1} \cdots n_{d}}\left(\prod_{u=1}^{d} f_{k_{u}, u}^{q-d+1}\right) \\
& =\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{\substack{n_{1}+\cdots+n_{d}=q-J \\
n_{1}>m_{1}, \ldots, n_{d}>m_{d}}} f_{k_{1}, 1}^{n_{1}} \cdots f_{k_{d, d}}^{n_{d}}
\end{aligned}
$$

whence (4.8) follows.
We define s_{1}, \ldots, s_{d-1} by

$$
\begin{aligned}
& n_{1}=s_{1} \\
& n_{2}=s_{2}-s_{1} \\
& \vdots \\
& n_{d-1}=s_{d-1}-s_{d-2} \\
& n_{d}=q-j-s_{d-1} .
\end{aligned}
$$

From (4.7) it follows that

$$
\begin{aligned}
& m_{1} \leqslant s_{1}, \\
& m_{2} \leqslant s_{2}-s_{1} \\
& \vdots \\
& m_{d-1} \leqslant s_{d-1}-s_{d-2} \\
& m_{d} \leqslant q-j-s_{d-1} .
\end{aligned}
$$

Then we can conclude

$$
\begin{aligned}
F_{k_{1} \cdots k_{d}}^{q}= & \sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{\substack{n_{1}+\cdots+n_{d}=q-j \\
n_{1}>m_{1}, \ldots, n_{d} \geqslant m_{d}}} f_{k_{1}, 1}^{n_{1}} \cdots f_{k_{d, d}}^{n_{d}} \\
= & \sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \\
& \sum_{\substack{q-j-1 \\
m_{d-1}<q-j-s_{d-1}}}^{\substack{s_{d-1}-1}} \mid \\
& \sum_{\substack{s_{d-2}=d-2 \\
m_{d-1}<s_{d-1}-s_{d-2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{s_{2}=2}^{s_{3}-1} \\
& m_{2} \leqslant s_{2}-s_{1} \\
& \sum_{\substack{s_{1}=1 \\
m_{1} \leqslant s_{1}}}^{s_{2}-1} f_{k_{1}, 1}^{s_{1}} f_{k_{2}, 2}^{s_{2}-s_{1}} \ldots f_{k_{d-1}, d-1}^{s_{d-1}-s_{d-2}} f_{k_{d}, d}^{q-j-s_{d-1}} \\
& =\sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \\
& s_{d-1}=m_{d-1}+\cdots+m_{1} \\
& s_{d-2}=m_{d-2}+\cdots+m_{1} \\
& \text { : } \\
& \sum_{s_{2}=}^{s_{3}-m_{3}+m_{1}} \\
& \sum_{s_{1}=m_{1}}^{s_{2}-m_{2}} f_{k_{1}, 1}^{s_{1}} f_{k_{2}, 2}^{s_{2}-s_{1}} \cdots f_{k_{d-1}, d-1}^{s_{d-1}-s_{d-2}} f_{k_{d}, d}^{q-j-s_{d-1}}
\end{aligned}
$$

which completes the proof of Theorem 2.
We conclude this section by considering cardinal polynomial Lagrange interpolation on d-simplices (see (2.5)-(2.7)). In view of (4.5) we have

$$
\begin{align*}
B_{q, d}(f)= & \sum_{r=d}^{q} \sum_{s_{d-1}=d-1}^{r-1} \\
& \vdots \tag{4.10}\\
& \sum_{s_{2}=2}^{s_{3}-1} \sum_{s_{1}=1}^{s_{2}-1} f\left(s_{1}, s_{2}-s_{1}, \ldots, r-s_{d-1}\right) F_{s_{1}, s_{2}-s_{1}, \ldots, r-s_{d-1}}^{q} .
\end{align*}
$$

We define

$$
\begin{aligned}
& m_{1}=s_{1} \\
& m_{2}=s_{2}-s_{1} \\
& \vdots \\
& m_{d-1}=s_{d-1}-s_{d-2} \\
& m_{d}=r-s_{d-1}
\end{aligned}
$$

and we obtain a more geometric formula for $B_{q, d}(f)$:

$$
\begin{equation*}
B_{q, d}(f)=\sum_{\substack{d \leqslant m_{1}+\ldots+m_{d}<q \\ 1 \leqslant m_{1} \ldots, 1 \leqslant m_{d}}} f\left(m_{1}, \ldots, m_{d}\right) F_{m_{1}, \ldots, m_{d}}^{q} \tag{4.11}
\end{equation*}
$$

The fundamental functions are obtained from (4.8), (4.9):

$$
\begin{align*}
F_{m_{1} \cdots m_{d}}^{q}= & \sum_{j=0}^{d-1}(-1)^{\gamma}\binom{d-1}{j} \sum_{\substack{n_{1}+\ldots+n_{d}=q-J \\
m_{1} \leqslant n_{1}, \ldots, m_{d} \leqslant n_{d}}} f_{m_{1} \cdots m_{d}}^{n_{1} n_{d}} \\
= & \sum_{j=0}^{d-1}(-1)^{j}\binom{d-1}{j} \sum_{s_{d-1}=m_{d-1}+\cdots+m_{1}}^{q-j-m_{d}} \\
& \vdots \\
& \sum_{s_{2}=m_{2}+m_{1}}^{s_{3}-m_{3}} \sum_{s_{1}=m_{1}}^{s_{2}-m_{2}} f_{m_{1}, 1}^{s_{1}} f_{m_{2}, 2}^{s_{2}-s_{1}} \cdots f_{m_{d}, d}^{q-J-s_{d-1}} . \tag{4.12}
\end{align*}
$$

5. A Trivariate Example

To illustrate the method of Boolean interpolation we construct a trivariate "serendipity" family of even degree (see also $[3,9])$. The points $x_{i, u}(i \in \mathbb{N}$, $u=1,2,3$) are chosen as follows:

$$
\begin{aligned}
& x_{1, u}=-1 \\
& x_{2, u}=+1 \\
& x_{3, u}=0 \\
& x_{4, u}=1-2^{-1} \\
& x_{5, u}=-1+2^{-1} \\
& x_{6, u}=1-2^{-2} \\
& x_{7, u}=-1+2^{-2}, \ldots
\end{aligned}
$$

i.e., we have

$$
\begin{gather*}
x_{1, u}=-1, \quad x_{2, u}=+1, \quad x_{3, u}=0, \\
x_{2 k . u}=1-2^{-(k-1)}, \quad x_{2 k+1, u}=-1+2^{-(k-1)} \\
(k \in \mathbb{N}, k \geqslant 2), \quad u=1,2,3 . \tag{5.1}
\end{gather*}
$$

The functions a_{u} are defined as follows:

$$
\begin{align*}
& a_{u}(1)=2, \\
& a_{u}(2)=3, \\
& a_{u}(m)=2 m-1 \quad(m \in \mathbb{N}, m \geqslant 3) \\
& \quad(u=1,2,3) . \tag{5.2}
\end{align*}
$$

We consider the interpolation scheme induced by $B_{5,3}$ in greater detail. The nodal configuration of $B_{5.3}$ is presented in Fig. 1. We use Theorem 2 to compute the fundamental functions for the typical points $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ of the trivariate Scott-element. Note that this element has no interior points.

$$
\begin{aligned}
Z_{1}=\left(x_{1,1}\right. & \left., x_{1,2}, x_{1,3}\right) \\
F_{1,1,1}^{5}= & f_{1,1}^{1} f_{1,2}^{1} f_{1,3}^{3} \\
& +\left(f_{1,1}^{1} f_{1,2}^{2}+f_{1,1}^{2} f_{1,2}^{1}\right) f_{1,3}^{2} \\
& +\left(f_{1,1}^{1} f_{1,2}^{3}+f_{1,1}^{2} f_{1,2}^{2}+f_{1,1}^{3} f_{1,2}^{1}\right) f_{1,3}^{1} \\
& -2\left(f_{1,1}^{1} f_{1,2}^{1} f_{1,3}^{2}+\left(f_{1,1}^{1} f_{1,2}^{2}+f_{1,1}^{2} f_{1,2}^{1}\right) f_{1,3}^{1}\right) \\
& +f_{1,1}^{1} f_{1,2}^{1} f_{1,3}^{1} .
\end{aligned}
$$

Fig. I. Trivariate Scott-element.

$$
\begin{aligned}
& Z_{2}=\left(x_{3,1}, x_{1,2}, x_{1,3}\right) \\
& F_{3,1,1}^{5}= f_{3,1}^{2} f_{1,2}^{1} f_{1,3}^{2} \\
&+\left(f_{3,1}^{2} f_{1,2}^{2}+f_{3,1}^{3} f_{1,2}^{1}\right) f_{1,3}^{1} \\
&-2 f_{3,1}^{2} f_{1,2}^{1} f_{1,3}^{1} . \\
& Z_{3}=\left(x_{3,1}, x_{1,2}, x_{3,3}\right) \\
& F_{3,1,3}^{5}= f_{3,1}^{2} f_{1,2}^{1} f_{3,3}^{2} . \\
& Z_{4}=\left(x_{5,1}, x_{1,2}, x_{1,3}\right) \\
& F_{5,1,1}^{5}= f_{5,1}^{3} f_{1,2}^{1} f_{1,3}^{1} .
\end{aligned}
$$

Finally we note that the invariance set of $B_{5,3}$ is given by

$$
\begin{aligned}
\operatorname{Im}\left(B_{5,3}\right)= & \mathbb{P}_{1,1,4}^{3}+\mathbb{P}_{1,2,2}^{3}+\mathbb{P}_{1,4,1}^{3} \\
& +\mathbb{P}_{2,1,2}^{3}+\mathbb{P}_{2,2,1}^{3} \\
& +\mathbb{P}_{4,1,1}^{3}
\end{aligned}
$$

Therefore, $\operatorname{Im}\left(B_{5,3}\right)$ contains the space of complete trivariate polynomials of total degree $\leqslant 4$:

$$
\operatorname{Im}\left(B_{5,3}\right) \supset \mathbb{P}_{4,3}
$$

References

1. E. W. Cheney and W. J. Gordon, Bivariate and multivariate interpolation with noncommutative projectors, in "Linear Spaces and Approximation" (P. L. Butzer and B. Sz. Nagy, Eds.), pp. 381-387, ISNM 40. 1977.
2. F.J. Delvos and H. Posdorf, Boolesche zweidimensionale Lagrange Interpolation. Computing 22 (1979), 311-323.
3. F.-J. Delvos and H. Posdorf. Reduced trivariate Hermite interpolation, in "The Mathematics of Finite Elements III, MAFELAP 1978" (J. R. Whiteman, Eds.), pp. 77-82, Academic Press, New York, 1979.
4. F.J. Delvos and H. Posdorf, On abstract Boolean interpolation, in "Approximation Theory III" (E. W. Cheney, Ed.), Academic Press, New York, in press.
5. F.-J. Delvos and H. Posdorf, Generalized Bierman interpolation, Resultate Math. in press.
6. W. J. Gordon, Distributive lattices and the approximation of multivariate functions, in "Approximation Theory with Special Emphasis on Spline Functions" (I. J. Schoenberg, Ed.), pp. 223-277, Academic Press, New York, 1969.
7. W. J. Gordon and C. A. Hall, Transfinite element methods: Blending function methods over arbitrary curved element domains, Numer. Math. 21 (1973), 109-129.
8. P. Lancaster and D. S. Watkins, Some families of finite elements, J. Inst. Math. Appl. 19 (1977), 385-397.
9. O. C. Zienkiewicz, "The Finite Element Method in Engineering Science," McGraw-Hill. New York, 1971.
